The Chain Rule (Differential Form)

Lecture 18 Section 2.4

Robb T. Koether

Hampden-Sydney College

Mon, Feb 20, 2017

Objectives

Objectives

• The Chain Rule.

2/5

The Chain Rule (Differential Notation)

The Chain Rule (Differential Notation)

Let y = f(u) and u = g(x) be functions. The derivative of their composition is

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

Examples

Use the Chain rule to find the derivatives of these functions.

• Let $y = u^3$ and $u = x^2 + 1$.

Examples

Use the Chain rule to find the derivatives of these functions.

- Let $y = u^3$ and $u = x^2 + 1$.
- Let $y = \sqrt{u}$ and $u = x^2 + 1$.

Examples

Use the Chain rule to find the derivatives of these functions.

- Let $y = u^3$ and $u = x^2 + 1$.
- Let $y = \sqrt{u}$ and $u = x^2 + 1$.
- Let $y = \sqrt{u}$, $u = v^2 + 1$, and $v = x^4 + x$.

Examples

Use the Chain rule to find the derivatives of these functions.

- Let $y = u^3$ and $u = x^2 + 1$.
- Let $y = \sqrt{u}$ and $u = x^2 + 1$.
- Let $y = \sqrt{u}$, $u = v^2 + 1$, and $v = x^4 + x$.
- Let $y = \frac{1}{u}$, $u = \sqrt{v}$, and $v = 4 x^2$.

Example 2.4.10

Example 2.4.1

Jarvis manages an appliance manufacturing firm. He determines that when blenders are price at p dollars apiece, the number sold each month will be

$$D(p)=\frac{8,000}{p}.$$

Furthermore, he estimates that t months from now, blenders will be selling at a price of $p(t) = 0.06t^{3/2} + 22.5$ dollars apiece.

Example 2.4.10

Example 2.4.1

Jarvis manages an appliance manufacturing firm. He determines that when blenders are price at p dollars apiece, the number sold each month will be

$$D(p)=\frac{8,000}{p}.$$

Furthermore, he estimates that t months from now, blenders will be selling at a price of $p(t) = 0.06t^{3/2} + 22.5$ dollars apiece.

(a) At what rate should Jarvis expect the monthly demand D(p) to be changing with respect to time 25 months from now?

Example 2.4.10

Example 2.4.1

Jarvis manages an appliance manufacturing firm. He determines that when blenders are price at p dollars apiece, the number sold each month will be

$$D(p)=\frac{8,000}{p}.$$

Furthermore, he estimates that t months from now, blenders will be selling at a price of $p(t) = 0.06t^{3/2} + 22.5$ dollars apiece.

- (a) At what rate should Jarvis expect the monthly demand D(p) to be changing with respect to time 25 months from now?
- (b) Will the demand be increasing or decreasing that time?